
Monitoring
Ephemeral
Infrastructure

With Osquery

Builder and Blue
Teamer!

Working on…

Cloudsec
Automation
Detection
And… Osquery!

Matt Jane
(clippy)

This talk is about

● Monitoring Kubernetes, ECS, Docker and why

it’s different

● Deployment and Management

● Methods and strategies for dealing with these

challenges

And so we begin

The Challenges

At the heart of the issue...

Normally this works pretty well, but…

The query never runs

So… that’s not good.

But!

Let’s try a Kubernetes Node

With a kubernetes job

Kubernetes Batch Job (parallelism 5)

Well....

The query runs, but we
miss all the containers
we actually wanted to
know about.

Our troubles so far

1. Scheduled queries won’t catch everything
2. Even if you shorten your query interval, you

still can’t guarantee you’ll catch everything.
3. In environments where things change rapidly,

the likelihood that you’ll miss something is
greatly increased.

Note: These are contrived examples

Scheduling queries to
run every 60 seconds
(or less) should be
done with caution

It’s generally a good
idea to target only
data you need

(Don’t use ‘*’ for
everything)

What about event
tables? Don’t they
solve this?

Event tables in osquery
behave differently than
regular tables. They hold a
number of events and
return the results in a
query.

What are events? Osquery exposes a pubsub
framework for aggregating
operating system information
asynchronously at event
time, storing related event
details in the osquery
backing store, and
performing a lookup to report
stored rows query time.

https://github.com/facebook/osquery/tree/master/osquery/events
https://github.com/facebook/osquery/tree/master/osquery/events

Event Tables Vs. Regular Tables

disk_events, file_events, hardware_events,
osquery_events, powershell_events, process_events,
process_file_events, selinux_events, socket_events,
syslog_events, user_events, user_interaction_events,
windows_events, yara_events

Event Tables: 14 Regular Tables: 215

Disk_info, dns_resolversj, docker_container_labels,
docker_container_mounts,docker_container_networ,
docker_container_ports, docker_container_processes,
docker_container_stats, docker_containers,
docker_image_labels, docker_networks,
docker_version, docker_volume_labels,
docker_volumes, drivers, ec2_instance_metadata,
ec2_instance_tags, elf_dynamic, elf_info .elf_sections
, etc_protocols.etc_services. Event_taps, example,
extended_attributes…………………………….

https://osql.io/schema/3.3.2#disk_events
https://osql.io/schema/3.3.2#file_events
https://osql.io/schema/3.3.2#hardware_events
https://osql.io/schema/3.3.2#osquery_events
https://osql.io/schema/3.3.2#powershell_events
https://osql.io/schema/3.3.2#process_events
https://osql.io/schema/3.3.2#process_file_events
https://osql.io/schema/3.3.2#selinux_events
https://osql.io/schema/3.3.2#socket_events
https://osql.io/schema/3.3.2#syslog_events
https://osql.io/schema/3.3.2#user_events
https://osql.io/schema/3.3.2#user_interaction_events
https://osql.io/schema/3.3.2#windows_events
https://osql.io/schema/3.3.2#yara_events
https://osql.io/schema/3.3.2#disk_info
https://osql.io/schema/3.3.2#dns_resolvers
https://osql.io/schema/3.3.2#docker_container_labels
https://osql.io/schema/3.3.2#docker_container_mounts
https://osql.io/schema/3.3.2#docker_container_networks
https://osql.io/schema/3.3.2#docker_container_ports
https://osql.io/schema/3.3.2#docker_container_processes
https://osql.io/schema/3.3.2#docker_container_stats
https://osql.io/schema/3.3.2#docker_containers
https://osql.io/schema/3.3.2#docker_image_labels
https://osql.io/schema/3.3.2#docker_networks
https://osql.io/schema/3.3.2#docker_version
https://osql.io/schema/3.3.2#docker_volume_labels
https://osql.io/schema/3.3.2#docker_volumes
https://osql.io/schema/3.3.2#drivers
https://osql.io/schema/3.3.2#ec2_instance_metadata
https://osql.io/schema/3.3.2#ec2_instance_tags
https://osql.io/schema/3.3.2#elf_dynamic
https://osql.io/schema/3.3.2#elf_info
https://osql.io/schema/3.3.2#elf_sections
https://osql.io/schema/3.3.2#etc_protocols
https://osql.io/schema/3.3.2#etc_services
https://osql.io/schema/3.3.2#event_taps
https://osql.io/schema/3.3.2#example
https://osql.io/schema/3.3.2#extended_attributes

Events are extremely useful, but they don’t
capture everything.

There are a lot of non-event tables which
are extremely valuable.

So.. Just schedule queries every 5 seconds!!

At which point,
whatever you’re
monitoring probably
looks like this…

So maybe that’s not
the answer.

Queries have an associated cost
Scheduling several queries rapidly that take more than a second or two to run
can (and will) rapidly overwhelm your system.

Rapidly scheduling queries can result in a lot of issues.

● Instance OOM
● CPU stuck @ 100%
● Overlapping queries
● Watchdog killing the osquery process repeatedly

And now for the actual informative part of the talk...

Monitoring

Ephemeral

Infrastructure!

Deployment and
Management

Deployment and management could probably a talk all by
itself

Deployments are very different based on environment.

Clippy’s Osquery Law

The resource that doesn’t have osquery installed is

approximately 1000% more likely to get popped and

that you can’t see.

So, when deploying...

Get your osquery
installation as close to a
guarantee as possible

● AMI
● Base Image
● First run of chef/puppet/etc
● Init Scripts

Management:

Opinions

Management Servers

A TLS server is mandatory

You will need to change much of your configuration on the fly. No
configuration management in the world will do this fast enough for
you.

On-Demand queries are essential. You will need to make heavy use of
them to catch as much data as possible during a resource’s lifetime.

Capabilities of a Management server

Must Haves:

● The ability to assign a default configuration to a node
● Assignment of configs via enrollment attributes

○ EG: Hostname contains db-01-ro-xx-xxx-xx.
■ Assign this the DB configuration

Must haves, cont.

● Auto-Enrollment (no node approval)

● On-Demand Queries

● Enrollment Queries (Not mandatory, but HIGHLY

recommended)

The Management Server Must Scale
Just like the rest of your infra, the management server needs to be
able to scale (up) and (hopefully) down.

Bursts in infra will result in (likely) equal bursts of need from your
management server.

Watch out for DBs and on-demand query queues getting
overwhelmed.

Management Database
● Client entries should become stateless-ish
● Use a TTL for entries that have not been updated

recently to remove them
● Rapid registration and update intervals can result in a

massive hit. DB caching of packs, queries, etc can
alleviate an enormous load due to their repetitive
nature

Putting it all together

When starting out

● Start simple
● Target data you need that you know
● Plan for your data to scale in and out

○ Bursts of autoscaling activities will generate corresponding
spikes in osquery data. Plan accordingly so you don’t lose data

○ Buffering data is better than dropping it on the floor, even if it
means slower alerting. At least its still there.

Host Configuration

Do the bare minimum to get your hosts to a point
where they can get the rest of your configuration from
your management server

BE AWARE!! Some flags can ONLY be set in the flag file
on the host and NOT by the management server

Use Enrollment Queries

● Enrollment queries are on-demand queries that are queued for a
node immediately upon enrollment and run only once

● Enrollment queries ensure that any data you absolutely MUST
have about a node is obtained

● This can be either done via eventing or triggered directly on your
management server if your management server supports them

Trigger on-demand queries with monitoring events
● Correlate data you want to have with events that create them

● Example: The process of creating a docker container from the

`process_events` table can be used to trigger a docker containers

query.

● Use a monitoring system/webhook to kick off on-demand queries

to that host with the data you want to use

Decorators save lives
● Establish what data you MUST ABSOLUTELY HAVE for a given query to

associate it with host, env, etc.
● Be aware of attribute re-use like IP address, friendly container names, etc.

○ Ip address
○ Hostname
○ Device hash
○ Docker-image-labels
○ Image-hash
○ mac-addresses/network interfaces
○ Instance metadata (Tags)

Why are decorators important?
Imagine looking at netflow logs from 3 weeks ago in an environment where
hosts frequently re-use IP addresses from a pool.

Now try correlating which resource made an outbound connection from an IP
that has been used by 50 different resources.

If you had an IP decorator in your queries, you’d know :)

Understand your Max Time To Alert:

● The time between even generation <-> the time the alert fires in your

monitoring system

● Add your on-demand query polling interval to the TTA

● This is the fastest you can GUARANTEE that you can execute an

on-demand query in response to an event. The average of this time may

be significantly less, but don’t plan for things to work “optimally”.

● Try to reduce your MTTA without blowing up your instances or your

management server. Burning heaps of slag tend to be less useful

That’s all I’ve got!

Thanks!

Slides: https://github.com/securityclippy/QueryCon

Twitter: @PansyMcCoward

Email: Securityclippy@securelyinsecure.com

Segment: We’re Hiring!

